RESEARCH ARTICLE

Taylor & Francis

Check for updates

Radiative transition probabilities between low-lying electronic states of N₂

Zhi Qin^a, Junming Zhao^a and Linhua Liu^{a,b}

^aSchool of Energy Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China; ^bSchool of Energy and Power Engineering, Shandong University, Qingdao, People's Republic of China

ABSTRACT

This work mainly investigates the transition dipole moments (TDMs) and radiative transition probabilities of dipole-allowed transitions between the b¹ Π_u , a^{''1} Σ_a^+ , 1³ Σ_a^- , 2³ Σ_a^- , 2³ Δ_q , C^{'3} Π_u , B^{'3} Σ_u^- , $W^{3}\Delta_{u}$, $2^{3}\Sigma_{u}^{+}$ and $H^{3}\Phi_{u}$ states of N₂. Many of these transition properties are previously unknown. For completeness, another 14 electronic states that correlate to four lowest dissociation limits are also calculated. The potential energy curves (PECs) are calculated at the valence internally contracted multireference configuration-interaction (icMRCI) level of theory, along with the Davidson correction, the core-valence (CV) correction and the scalar relativistic correction, as well as the basis-set extrapolation. These corrections, especially the CV correction, greatly improve the accuracy of the PECs, as shown by the excellent agreement of the fitted spectroscopic parameters with the available experimental data. In order to verify the accuracy of transition properties, we calculate the Einstein coefficients of the extensively studied $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u - B^3\Pi_g$, $W^3\Delta_u - B^3\Pi_g$, $B'^3\Sigma_u^- - B^3\Pi_g$, $B'^$ $B^{3}\Pi_{g}$, $w^{1}\Delta_{u} - a^{1}\Pi_{g}$, $a^{1}\Pi_{g} - a^{\prime 1}\Sigma_{u}^{-}$, $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ and $b^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}$ band transition systems and compute the radiative lifetimes of $N_2B^3\Pi_g$, $C^3\Pi_u$ and $W^3\Delta_u$ states, which are in good agreement with the experimental data. Similar accuracy can be assumed for the previously undetermined $1^3\Sigma_g^- - C'^3\Pi_u$, $2^3\Sigma_g^- - C'^3\Pi_u$, $2^3\Sigma_g^- - B'^3\Sigma_u^-$, $2^3\Delta_g - W^3\Delta_u$, $2^3\Delta_g - H^3\Phi_u$, $2^3\Sigma_u^+ - B^3\Pi_g$ and $b^1 \Pi_u - a''^1 \Sigma_a^+$ band transition systems. The large Einstein coefficients of these band systems can provide guidelines for observing such newly predicted band transitions in the appropriate spectroscopy experiments.

ARTICLE HISTORY

Received 3 September 2018 Accepted 17 December 2018

KEYWORDS

Spectroscopic parameter; transition dipole moment; radiative transition probability; radiative lifetime; N₂

I. Introduction

 N_2 is one of the most widely studied homonuclear diatomic molecules due to its significance in the photophysical and photochemical processes taking place in stellar atmospheres [1–3], high-altitude nuclear explosion [4], gas discharge [5] and afterglows [6], etc. In addition, during the hypersonic flight into the Earth's atmosphere, radiation from high-temperature air in shock layers contributes to the heat flux suffered by the surface of the vehicles. Hence, radiation derived from high-temperature air must be predicted in order to efficiently design the thermal protection systems of vehicles [7–10]. It should be noted that radiative transition probabilities are important parameters to explain the atmospheric phenomena, to exploit the planetary spectra and to calculate the radiation. Hence, studies of the transition properties of N_2 are of crucial importance in these scientific research fields.

Numbers of experimental studies have been performed to measure the spectral transition properties of N_2 . By organising the work of predecessors, Lofthus and Krupenie [11] gave a comprehensive review of the

CONTACT Linhua Liu 🖾 liulinhua@sdu.edu.cn 🖻 School of Energy and Power Engineering, Shandong University, Qingdao, 266237, People's Republic of China

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00268976.2018.1562579

© 2019 Informa UK Limited, trading as Taylor & Francis Group

experimental electronic spectra of N₂, which were later updated by Huber and Herzberg [12]. Subsequently, Neuschäfer et al. [13] observed an intense emission of the $B^3\Pi_g - A^3\Sigma_u^+$ transition from a nitrogen molecular beam which was passed through a dc discharge at the nozzle exit. Piper et al. [14] measured the relative variation in the transition dipole moment with internuclear distance for the $B^3\Pi_g - A^3\Sigma_{\mu}^+$ system by a branching-ratio technology. Fraser et al. [15] identified the $W^{3}\Delta_{u}$ -B³ Π_{g} band transition system by the Excede: Spectral auroral simulation experiment. And Ottinger and Vilesov [16] observed the $B^3\Pi_{g} - A^3\Sigma_{\mu}^+$ transition from metastable $N_2 A^3 \Sigma_u^+$ component of a molecular beam and first determined the N₂A'⁵ Σ_{σ}^{+} state experimentally by analysis of the perturbation. In addition, Roux et al. [17-24] measured the infrared emission spectrum of the W³ Δ_u – B³ Π_g , w¹ Δ_u – a¹ Π_g , B³ Π_g – $A^{3}\Sigma_{u}^{+}$ and $C^{3}\Pi_{u} - B^{3}\Pi_{g}$ transitions by high-resolution Fourier spectrometry. With the high-resolution laserbased one extreme-ultraviolet (EUV) + one UV twophoton ionisation spectroscopy and EUV photoabsorption spectroscopy, Lewis et al. [25] observed the C, $3s\sigma_{g}F_{3}$, and $3p\pi_{u}G_{3}{}^{3}\Pi_{u}$ Rydberg states and studied spin-forbidden ${}^{3}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ transitions. Summarising the experimental results, we found that most experimental studies mainly investigated the $B^3\Pi_{\sigma} A^{3}\Sigma_{u}^{+}$, $C^{3}\Pi_{u} - B^{3}\Pi_{g}$ and $W^{3}\Delta_{u} - B^{3}\Pi_{g}$ band transition systems. Transition properties achieved by experiments are limited by the present technologies. Therefore, theoretical calculations need to be carried out in order to predict the theoretically possible transitions and to provide guidance for observing the unknown transitions by appropriate spectroscopy experiments.

To calculate the transition properties of diatomic molecules, many theoretical approaches have been developed. The earlier valence configuration interaction (VCI) treatment of Michels [26] and configuration interaction (CI) study of Ermler et al. [27] presented a more complete treatment of the N2 electronic states, including the potential energy curves of low-lying valence states, the dominant molecular-orbital configurations and a listing of known and predicted spectroscopic data. Werner et al. [28] employed the multi-configuration self-consistent field (MCSCF) and self-consistent electron pairs (SCEP) methods to calculate the radiative transition probabilities of the $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u B^{3}\Pi_{g}$, $W^{3}\Delta_{u} - B^{3}\Pi_{g}$ and $B'^{3}\Sigma_{u}^{-} - B^{3}\Pi_{g}$ band transition systems. The potential energy curves and transition moments of $^{1}\Sigma_{g}^{+}$ and $^{1}\Sigma_{u}^{+}$ were investigated with CI method by Ermler et al. [29]. Yet the CI method at that time was limited by the number of reference spaces, so a new internally contracted direct multiconfigurationreference configuration interaction (MRCI) method was

presented by Werner and Knowles [30,31], allowing the use of much larger reference spaces, thus promoting the efficiency and accuracy of the potential energy functions and molecular properties. With the MRCI method, Ndome et al. [32] calculated the diagonal spin-orbit functions for the lowest three non-Rydberg states of ${}^{3}\Pi_{\mu}$ symmetry in molecular nitrogen, which were consistent with the experimental data of Ref. [25]. Hochlaf et al. [33,34] computed the potential energy curves and spin-orbit coupling integrals of N2 electronic states located in the 0-120000 cm⁻¹ energy domain and investigated the valence-Rydberg quintet states, the transition moments and the spin-orbit couplings to the close lying triplet electronic states. Shi et al. [35] studied the potential energy curves and the spectroscopic parameters of the $A^3 \Sigma_u^+$, $B^3 \Pi_g$, $W^3 \Delta_u$ and $B'^3 \Sigma_u^-$ states for the ¹⁴N₂, ¹⁴N¹⁵N, ¹⁵N₂ isotopologues including the Davidson correction, the core-valence correction and the scalar relativistic correction. Moreover, Little and Tennyson [36] gave a detailed calculation of the potential energy curves for singlet and triplet Rydberg states of N2 using three ab initio procedures.

However, most of the theoretical studies focused on the potential energy curves and the spectroscopic parameters. Only $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u - B^3\Pi_g$, $W^3\Delta_u$ $-B^{3}\Pi_{g}, B^{\prime 3}\Sigma_{u}^{-}-B^{3}\Pi_{g}, w^{1}\Delta_{u}-a^{1}\Pi_{g}, a^{1}\Pi_{g}-a^{\prime 1}\Sigma_{u}^{-},$ $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ and $b^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}$ band transition systems have been investigated. In this paper, the stateof-the-art ab-initio methodology is used to mainly investigate the radiative transition properties of dipoleallowed transitions between the $b^1 \Pi_u$, $a''^1 \Sigma_g^+$, $1^3 \Sigma_g^-$, $2^{3}\Sigma_{g}^{-}, 2^{3}\Delta_{g}, C^{\prime 3}\Pi_{u}, B^{\prime 3}\Sigma_{u}^{-}, W^{3}\Delta_{u}, 2^{3}\Sigma_{u}^{+} \text{ and } H^{3}\Phi_{u}$ states of N₂. The computational approaches are introduced in the next section. The potential energy curves (PECs) and spectroscopic parameters of these electronic states are calculated and given in section III A. In section III B, transition dipole moments (TDMs) are calculated and used to determine the radiative transition probabilities of dipole-allowed transitions between the $b^1 \Pi_u$, $a''^1 \Sigma_g^+$, $1^3 \Sigma_g^-$, $2^3 \Sigma_g^-$, $2^3 \Delta_g$, $C'^3 \Pi_u$, $B'^3 \Sigma_u^-$, $W^3 \Delta_u$, $2^3 \Sigma_u^+$ and $H^3 \Phi_u$ states of N₂. In section IV, conclusions are drawn.

II. Computational approaches

All the *ab initio* electronic calculations of N₂ were carried out with the MOLPRO 2015 programme suite [37,38]. Potential energy curves were calculated using the complete active space self-consistent field (CASSCF) [39] method followed by the valence internally contracted MRCI (icMRCI) [30,31] approach with the Davidson correction [40]. All configuration state functions (CSFs) obtained by CASSCF are used as a reference for the icM-RCI calculations. In CASSCF, the state-averaged technique is employed for the electronic states which have the same spin and symmetry. Both the aug-cc-pV5Z (AV5Z) and aug-cc-pV6Z (AV6Z) basis sets of Dunning [41–43] are used to describe the nitrogen atom for extrapolating the potential energies to the complete basis set (CBS) limit (described below).

The N₂ molecule belongs to $D_{\infty h}$ symmetry. However, we must replace the $D_{\infty h}$ symmetry with the D_{2h} point group due to the limitation of the programme. The corresponding symmetry operations for the $D_{\infty h} \rightarrow D_{2h}$ can be found in Ref. [44]. In the calculations of the CASSCF and subsequent icMRCI, core-valence (CV) correlation energy correction and scalar relativistic energy correction, the valence molecular orbitals (MOs) and two more σ_g and two more π_u MOs were included into the active space, which had been proved to be more effective in treating the Rydberg character of the electronic states, especially for higher-lying electronic states [32–34,45].

In the icMRCI calculations, basis-set extrapolation was used to obtain more reliable and accurate potential energy curves. The potential energy for each internuclear distance comprises two parts: the reference energy and the correlation energy. Since the reference energy converges faster than the correlation energy, the reference and correlation energies should be extrapolated separately. We use the basis-set extrapolation formula [46,47], just as follows

$$E_X^{ref} = E_{\infty}^{ref} + A^{ref} X^{-\alpha}, \qquad (1)$$

$$E_X^{cor} = E_\infty^{cor} + A^{cor} X^{-\beta}.$$
 (2)

where E_X^{ref} and E_X^{cor} are the reference and correlation energies, respectively, which are calculated with the augcc-pVXZ basis set. E_{∞}^{ref} and E_{∞}^{cor} denote the reference and correlation energies, respectively, which are obtained by the extrapolation of the basis set to the CBS limit ∞ . In this work, the aug-cc-pV5Z (AV5Z) and aug-ccpV6Z (AV6Z) basis sets were adopted to extrapolate the potential energies (denoted as icMRCI + Q/56). A^{ref} and A^{cor} are constants for a given molecule. Extrapolated parameters α and β are obtained from Truhlar [46] as 3.4 and 2.4 for the reference and correlation energies, respectively.

CV correlation energy correction was obtained by the icMRCI approach using the aug-cc-pCV5Z basis set [41]. The difference between the energy calculated by considering all the electrons in the two N atoms and that obtained by frozen-core calculation for the four electrons in the 1 s inner orbital of the two N atoms produces the CV correlation energy correction result. Scalar relativistic energy correction was calculated via the third-order Douglas–Kroll–Hess (DKH3) Hamiltonian approximation [48–50] at the icMRCI level of theory. More specifically, the aug-cc-pV5Z-DK basis set with the DKH3 approximation and the aug-cc-pV5Z basis set without the DKH3 approximation were both used to compute the potential energy. The difference between these two energies is the scalar relativistic energy correction result, denoted as DK.

Electronic transition dipole moments (TDMs) were calculated at the icMRCI/AV6Z level of theory. Utilising the PECs, the vibrational level energies can be obtained by solving the nuclear radial Schrödinger equation, and the rotational constant B_v can be calculated by [51]

$$B_{v} = \left(\frac{\hbar}{2\mu}\right) \left\langle v, J \left| \frac{1}{r^{2}} \right| v, J \right\rangle$$
(3)

where $\hbar \ddot{i} \ddot{y} \dot{A}$ is the reduced Planck's constant, μ is the reduced mass of the molecule, v and J are the vibrational and rotational quantum number, respectively, and r is the internuclear distance. By analysing the potential energy curve and fitting the vibrational level energies and the rotational constant as polynomials of v + 1/2, we obtained the spectroscopic parameters of electronic states, including adiabatic excitation energy T_e , dissociation energy D_e , equilibrium internuclear distance r_e , harmonic frequency ω_e , first- and second-order anharmonic constants $\omega_e x_e$ and $\omega_e y_e$, balanced rotation constant B_e and rovibrational coupling constant α_e . With the calculated PECs and TDMs, radiative transition probabilities, i.e. Einstein coefficients of spontaneous emission (hereinafter referred to as Einstein coefficients), were determined by the LEVEL programme [51]. Einstein coefficients were then used to calculate the radiative lifetimes of different vibrational levels of some electronic states.

Note that a single barrier emerges in some electronic states, leading to different treatments of D_e for different electronic states. If the barrier is higher than the dissociation limit, we determine the D_e by the difference between the potential energy at the equilibrium internuclear distance and that at the top of the barrier. If not, the D_e is evaluated by the difference between the potential energy at the equilibrium internuclear distance and that at the top of the barrier. If not, the D_e is evaluated by the difference between the potential energy at the equilibrium internuclear distance and that at the dissociation asymptote. The energy separations between each higher dissociation limit and the lowest one are calculated at the icMRCI + Q/56 + CV + DK theory level and given in Table 1.

As shown in Table 1, the obtained energy separations are in good agreement with the experimental data from Refs. [11] and [52].

Table	1. 7 Singlet and	17 triplet electron	ic states of N_2 and	their dissociation limits.
-------	------------------	---------------------	------------------------	----------------------------

		Relative en	ergy (cm ⁻¹)
Dissociation limit	Electronic states	This work ^a	Exp.[11,52]
$N(^{4}S_{u}) + N(^{4}S_{u})$	$\chi^1 \Sigma_a^+$, $A^3 \Sigma_u^+$	0.00	0.00
$N({}^{4}S_{u}) + N({}^{2}D_{u})$	$W^3 \Delta_u$, $B^3 \Pi_g$, $C^3 \Pi_u$, $C'^3 \Pi_u$, $E^3 \Sigma_g^+$, $G^3 \Delta_g$, $2^3 \Sigma_u^+$	19258.55	19224.46
$N({}^{4}S_{u}) + N({}^{2}P_{u})$	$B^{\prime 3}\Sigma_{u}^{-}, 1^{3}\Sigma_{a}^{-}, 2^{3}\Pi_{u}, 2^{3}\Pi_{q}$	28890.42	28839.31
$\frac{N(^2D_u) + N(^2D_u)}{2}$	$a^{1}\Pi_{g},a'^{1}\Sigma_{u}^{-},w^{1}\Delta_{u},b^{1}\Pi_{u}^{-},a''^{1}\Sigma_{g}^{+},1^{1}\Gamma_{g},H^{3}\Phi_{u},2^{3}\Sigma_{g}^{-},3^{3}\Pi_{u},3^{3}\Pi_{g},2^{3}\Delta_{g}$	38477.87	38448.93

^a determined at the icMRCI + Q/56 + CV + DK level of theory.

III. Results and discussion

A. Potential energy curves and spectroscopic parameters

Potential energy curves of 7 singlet and 17 triplet electronic states calculated at the icMRCI + Q/56 + CV +DK level of theory are shown in Figure 1. For the electronic states that are vastly studied, we will not elaborate on them and just provide the calculated potential energies in the Supplementary Material. Some electronic states that are important for calculating the radiative transition parameters are elaborated below.

1. The ${}^{3}\Pi_{u}$ states

Predissociation of the ${}^{3}\Pi_{u}$ states for N₂ attracts the interests of many researchers due to its significance in the photochemistry of nitrogen-rich planetary atmospheres. Since Carroll and Mulliken [53] presented an insightful work of the structure and predissociation for the ${}^{3}\Pi_{u}$ states of N₂, a large number of experimental and theoretical studies [21,24,25,27,32,33,36,54–56] had been carried out on the ${}^{3}\Pi_{u}$ states and their strong mutual interactions. Nevertheless, the shapes of the potential energy curves for the ${}^{3}\Pi_{u}$ states remain controversial. The recent work from Little and Tennyson [36] presented a comparison of the ${}^{3}\Pi_{u}$ states with those of Hochlaf et al. [33] and Guberman [56]. Obvious differences of the potential energy curves for the ${}^{3}\Pi_{u}$ states can be observed among these three calculations, especially for smaller internuclear distances as shown in Figure 2.

Figure 2. N₂ C³ Π_u , C^{'3} Π_u and 2³ Π_u states compared to those of Little and Tennyson [36], Guberman [56] and Hochalf et al. [33].

Figure 1. Potential energy curves of N_2 electronic states calculated at the icMRCl + Q/56 + CV + DK level of theory. The potential energy curves are given in energy relative to the minimum of the ground state.

For the $C^3\Pi_u$ state, the calculated potential energy curve is similar to previous theoretical ones. Its potential energy curve becomes inverted at an internuclear distance near 2.1Å, corresponding to a change in the leading electronic configuration from $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)$ $(3\sigma_g)^2(1\pi_u)^4(1\pi_g)$ to $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(3\sigma_g)$ $(1\pi_{\mu})^{3}(1\pi_{\sigma})^{2}$, thus forming a new state C^{'3} Π_{μ} . Such feature had been studied in detail by Ndome et al. [32]. The calculated equilibrium distances of the $C^3 \Pi_u$ and $C'^3 \Pi_u$ states are 1.1480Å and 1.5111Å, respectively, which are in excellent agreement with the experimental values of 1.149Å and 1.514Å [12], respectively. The dissociation energy of the $C^3 \Pi_u$ state obtained here is 9957.73 cm⁻¹, which is about 20 cm^{-1} higher than the experimental value of 9978.51 cm^{-1} . The vibrational level energies and internal rotation constants of the $C^3\Pi_u$ state are given and compared with the experimental values [24] in the Supplementary Material, and good agreement is observed except for v = 3 and v = 4 for the $C^3 \Pi_u$ state since there is a strong interaction between the $C^3\Pi_u$ and $C^{\prime 3}\Pi_{u}$ states at internuclear distance near 1.3Å (corresponding to v = 3 and v = 4). For $2^3 \Pi_u$ state, our icMRCI+Q/56+CV+DK calculations of the potential energy curve is closer to those recently calculated using the UK molecular R-matrix method [36] for the internuclear distances lower than about 1.25Å. For the internuclear distances larger than 1.25Å, our calculated potential energy curve is similar to previous theoretical ones.

2. The $1^1\Gamma_g$ state

The electronic state of $1^{1}\Gamma_{g}$ was first mentioned theoretically by Ermler et al. [27]. Almost simultaneously, Michels [26] presented a full potential energy curve of the $1^{1}\Gamma_{g}$ state that is strongly bound with a deep potential well of 17582.88 cm⁻¹, updated to \sim 13750 cm⁻¹ by Hochlaf et al. [33] with the MRCI/aug-cc-pVQZ calculations. A potential well of 14758.27 cm^{-1} is obtained in this work at the icMRCI + Q/56 + CV + DK level of theory. Our calculated excitation energy of the $1^{1}\Gamma_{g}$ state is $102590.25 \text{ cm}^{-1}$, which is about 400 cm^{-1} lower than the calculated value of 102993 cm^{-1} from Hochlaf et al. [33]. The calculated equilibrium distance is 1.6073Å, which is very close to the calculated one of Hochlaf et al. [33]. The first ten vibrational levels and inertial rotation constants are used to fit the spectroscopic constants: $\omega_e = 801.45 \text{ cm}^{-1}$, $\omega_e x_e = 9.52 \text{ cm}^{-1}$, $\omega_e y_e = 0.18 \text{ cm}^{-1}$, $B_e = 0.92971 \text{ cm}^{-1}$ and $\alpha_e = 0.931$ cm⁻¹ (Table 2). The $1^{1}\Gamma_{g}$ state is the double orbital excitation from the ground state and its wavefunction is dominated by the $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(3\sigma_g)^2(1\pi_u)^2$ $(1\pi_g)^2$ electronic configuration, i.e. two electrons excite from the $(1\pi_u)$ MO into the vacant $(1\pi_g)$ MO.

3. The ${}^{3}\Sigma_{q}^{-}$ states

A ${}^{3}\Sigma_{g}^{-}$ state $(1{}^{3}\Sigma_{g}^{-})$ that converges adiabatically to the $N({}^{4}S_{\mu}) + N({}^{2}P_{\mu})$ dissociation limit was predicted by Michels [26] in 1981, confirmed about 30 years later by Hochlaf et al. [33] through the large calculations at the MRCI/aug-cc-pVQZ level of theory. This electronic state is formed after excitation of two electrons from the $(1\pi_u)$ MO into the $(1\pi_g)$ MO. Michels also predicted another ${}^{3}\Sigma_{g}^{-}$ state $(2^{3}\Sigma_{g}^{-})$ with a double-well potential. The existence of this electronic state is confirmed by Hochlaf et al., but with a unique shallow potential well, which is also confirmed in our calculations at the icMRCI + Q/56 + CV + DK level of theory. And the $2^{3}\Sigma_{g}^{-}$ state is dominated by the $(1\pi_{u})^{-2}(1\pi_{g})^{2}$ and $(3\sigma_g)^{-2}(1\pi_g)^2$ electronic configurations. These two states were studied in detail by Hochlaf et al. [33] due to its important role in N2 vacuum ultra violet (VUV) photodissociation. In our work, these two states are found to be very important for their radiative transitions to the ${}^{3}\Pi_{u}$ states. The radiative transition probabilities between the ${}^{3}\Sigma_{g}^{-}$ states and ${}^{3}\Pi_{u}$ states are given in section B.

4. The ${}^{3}\Sigma_{\mu}^{+}$ states

Among the states of the ${}^{3}\Sigma_{u}^{+}$ symmetry, the $A^{3}\Sigma_{u}^{+}$ state is mostly studied theoretically and experimentally [14,19,28,35,70] and will not be elaborated here. Michels [26] and Hochlaf et al. [33] predicted a ${}^{3}\Sigma_{u}^{+}$ state $(2{}^{3}\Sigma_{u}^{+})$ that is nearly repulsive. However, an apparent potential well located at about 102792 cm⁻¹ for internuclear distances smaller than about 1.4 Å is found in this work. The depth of the potential well is 18000.63 cm⁻¹. The equilibrium distance of the $2^{3}\Sigma_{u}^{+}$ state is 1.1168 Å. The potential well is formed at internuclear distances where the corresponding potential energies have not been studied before. The existence of such a potential well maybe contributes to its radiative transition to the adjacent electronic states, e.g. the $2^{3}\Sigma_{u}^{+} - E^{3}\Sigma_{g}^{+}$ transition is expected to be most likely to occur. In addition, the $3^{3}\Sigma_{u}^{+}$ state that correlates to the $N(^{2}D_{u}) + N(^{2}D_{u})$ dissociation limit is predicted to exist lying higher than the $2^{3}\Sigma_{u}^{+}$ state, with a similar shape of the potential energy curve to that of the $2^{3}\Sigma_{u}^{+}$ state. The potential energy curve of the $3^{3}\Sigma_{u}^{+}$ state is not given here due to its uncertainty.

5. The $b^1 \Pi_u$ and $b'^1 \Sigma_u^+$ states

The calculated potential energy curves of the $b^1 \Pi_u$ and $b'^1 \Sigma_u^+$ electronic states are given in Figures 3 and 4, respectively, and compared with those of Little and Tennyson [36] and those of Spelsberg and Meyer [45]. For the $b^1 \Pi_u$ state, our calculations predict a potential energy curve lower than previous theoretical data [36,45] for internuclear distances smaller than 1.13Å. Beyond this

Table 2. Spectroscopic parameters of the electronic states of N_2 calculated at the icMRCI + Q/56 + CV + DK level of theory and their comparison with available experimental and theoretical data.

Electroni	c state	$D_{\rm e}/{\rm cm}^{-1}$	$T_{\rm e}/{\rm cm}^{-1}$	<i>R</i> e/Å	$\omega_e/\mathrm{cm}^{-1}$	$\omega_e x_e / \text{cm}^{-1}$	$10^2 \omega_e y_e / \mathrm{cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$10^2 \alpha_{\rm e}/{\rm cm}^{-1}$
$X^1\Sigma_{\alpha}^+$	This paper	79889.28	0.00	1.0975	2359.56	14.1093	-1.369	1.99896	1.718
9	Exp. [11]	79889.77	0.00	1.0977	2358.57	14.324	-2.258	1.99820	1.728
	Exp. [12]		0.00	1.0977	2358.57	14.324	-2.26	1.99824	1.732
	Cal. [57]	70492.83 ^a	0.00 ^a	1.1201 ^a	2323 ^a				
	Cal. [58]	79462 ^b	0.00 ^b	1.0994 ^b	2343 ^b				
	Cal. [59]	80622.03 ^c	0.00 ^c	1.0984 ^c	2354.2 ^c				
$A^3 \Sigma_u^+$	This paper	29621.03	50268.43	1.2862	1461.84	13.5119	-3.929	1.45522	1.804
	Exp. [11,60]	29685.81	49754.78	1.2866	1460.64	13.8723	-1.030	1.4546	1.799
	Exp. [12]		50203.63	1.4546	1460.64	13.872		1.4546	1.80
	Exp. [17]		50930.65		1460.57	13.829	2.6	1.4548	1.824
	Cal. [28]	26616.29	50021.28	1.294	1442.2	13.6		1.438	1.79
	Cal. [58]	29525°	49938 ⁰	1.2895 ^b	1449 ⁰				
	Cal. [59]	30246.81	503/3°	1.2867	1460.7°	12.02/1		4.45506	1.010
n3 m	Cal. [35]	29536.82	50381.40	1.2859	1463./1	13.8361	2 402	1.45596	1.812
Ballg	This paper	39532.20	59738.83	1.2128	1/32.93	14.1594	-2.482	1.636/9	1.779
	Exp. [11]	39494.14	59306.81	1.2126	1/33.39	14.1221	-5.688	1.63/45	1.791
	Exp. [12]	20401 21	59619.35	1.2126	1/33.39	14.122		1.63/45	1.791
	Exp. [17]	39491.31	59018.80	1.2124	1733.99	14.3919		1.03/88	1.8129
	Cal. [20]	2027cb	50225b	1.210 1.2140b	1750.4 1754 ^b	14.5		1.027	1.02
	Cal. [50]	20571 20 ⁰	59525 50965 ^C	1.2140 1.2120 ^C	1724 1722 0 ^C				
	Cal. [39]	39371.20	50867.28	1.2132	1733.0	1/ 1000		1 63665	1 7163
W/ ³ A	This namer	39437.27	59750 11	1.2119	1729.30	14.1099	1 606	1.03003	1.7105
vv Δu	Fyn [11 61]	39200.52	59380	1.2790	1501.00	11.4957	1.000	1.47042	1.090
	Exp. [17,67] Exp. [12,62]	57505.0	59808		1501.4	11.0			
	Exp. [72,02] Exp. [20]	39304 99	59805 18	1 2797	1506.49	12 5469		1 47027	1 7061
	Cal. [28]	36698.21	60264.52	1.285	1497.1	12.1		1.457	1.66
	Cal. [58]	39225 ^b	59475 ^b	1.2828 ^b	1495 ^b	12.1		1.157	1.00
	Cal. [59]	39518.82 ^c	59919 ^c	1.2798 ^c	1507.6 ^c				
	Cal. [35]	39290.48	59985.85	1.2796	1507.67	12.5694		1.47043	1.7035
$B^{\prime 3}\Sigma_{\mu}^{-}$	This paper	42510.80	66268.90	1.2783	1518.20	11.9638	1.786	1.47307	1.647
ŭ	Exp. [11]	42456.54	65852.35	1.2784	1516.88	12.1811		1.47323	1.6656
	Exp. [12]		66272.47	1.2784	1516.88	12.181		1.4733	1.666
	Exp. [20]			1.2784	1516.81	12.115	3.2	1.47314	1.667
	Cal. [28]	40811.64	67039.57	1.284	1510.1	11.6		1.461	1.62
	Cal. [58]	42630 ^b	66045 ^b	1.2812 ^b	1507 ^b				
	Cal. [59]	42663.11	66508	1.2784	1518.8				
1	Cal. [35]	42479.60	66494.74	1.2783	1518.32	12.1181		1.47342	1.6640
$w'\Delta_u$	This paper	46273.82	72059.74	1.2684	1562.11	12.0017	4.146	1.49672	1.63
	Exp. [11,63]	46241.86	/1698.49	1.2688	1559.50	12.00/8	4.542	1.49554	1.62
	Exp. [12]		/209/.4	1.268	1559.26	11.63	2.40	1.498	1.66
	Exp. [23]	42424 059	71029 403	1.2085	1559.34	11.929	3.49	1.49020	1.038
	Cal. [57]	42424.05- 45027b	71920.49- 71604b	1.20//- 1.2710b	1540- 1551b				
	Cal. [50]	45027 46152 67 ⁰	71094° 72007 ⁰	1.2/10	1551				
	Cal [33]	40105.07	72097	1.2005	15501.2	12 30	15.4	1 4010	1.60
1 ¹ Г.	This namer	14758 27	102590 25	1.6073	801 45	9 5200	18 302	0 92971	0.931
. rg	Cal [26]	17582.88	100738.61	1.60	856.2	97	10.502	0.94	11
	Cal [33]	17502.00	102993	1 608	816.5	935		0.9305	1 23
$2^3 \Sigma^+$	This paper	18000.63	102792.94	1.1168	2165.11	12.8504	-66.907	1.92937	1.764
$a^1 \Pi_a$	This paper	48988.61	69387.48	1.2211	1694.74	14.1178	1.514	1.61479	1.782
y	Exp. [11.64]	49055.62	68951.21	1,2203	1694.19	13.9480		1.61698	1,7984
	Exp. [12.65]	.,,,,,,	69283.06	1.2203	1694.21	13.9491		1.6169	1.793
	Exp. [23]			1.2204	1694.20	13.956	1.02	1.61675	1.788
	Cal. [57]	46054.24 ^a	68307.07 ^a	1.2425 ^a	1686 ^a				
	Cal. [58]	48655 ^b	69067 ^b	1.2232 ^b	1679 ^b				
	Cal. [59]	48864.27 ^c	69386 ^c	1.2215 ^c	1692.2 ^c				
	Cal. [33]		69971	1.225	1687.5	13.91	1.83	1.6034	1.78
$a'^1 \Sigma_{\mu}^-$	This paper	50294.32	68072.83	1.2751	1533.33	12.0093	3.320	1.47914	1.605
u	Exp. [11]	50186.29	67739.29	1.2754	1530.27	12.0778	4.1534	1.48012	1.6618
	Exp. [12,66]		68152.66	1.2755	1530.25	12.0747		1.4799	1.657
	Cal. [57]	46376.86 ^a	68008.64 ^a	1.2949 ^a	1512 ^a				
	Cal. [58]	50160 ^b	67567 ^b	1.2781 ^b	1521 ^b				
	Cal. [59]	50221.32 ^c	68151 ^c	1.2754 ^c	1529.3 ^c				
2	Cal. [33]		69032	1.278	1523.6	11.91	2.8	1.4725	1.66
С°Пu	This paper	9957.73	88909.33	1.1480	2070.52	28.42		1.82943	2.738

(continued).

Table 2. Continued.

Electronic state		$D_{\rm e}/{\rm cm}^{-1}$	$T_{\rm e}/{\rm cm}^{-1}$	R _e ∕Å	$\omega_e/{ m cm}^{-1}$	$\omega_e x_e / \text{cm}^{-1}$	$10^2 \omega_e y_e / \mathrm{cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$10^2 \alpha_{ m e}/{ m cm}^{-1}$
	Exp. [11] Exp. [12]	9976.71	88977.84 89136.88	1.1487 1.1487	2047.18 2047.18	28.445 28.445	2 245	1.82473 1.82473	1.8683 1.868
	Cal. [28] Cal. [58]	9660 ^b	91558.82 89040 ^b	1.1480 1.150 1.1509 ^b	2047.79 2078 2031 ^b	28.942	2.245	1.821	2.4
c/3	Cal. [59]	9961.02 ^c	89475 ^c	1.1486 ^c	2040.7 ^c				
C ⁵ II _u	Exp. [12] Exp. [67]	3003.34	97898.53 98351 97563.7 ^e	1.5111 1.5146					
$E^{3}\Sigma_{g}^{+}$	This paper Exp. [11]	25130.04	95280.55 95774.5	1.1134 1.1177 1.1177	2228.40 2185 2185	15.3160	5.941	1.93540 1.9273	1.265
$b^1\Pi_u$	Cal. [33] This paper	16274.55	95900 101284.02	1.121 1.3322	2216.3 661.05	12.8 —8.0860	-40 -38.067	1.9275 1.914 1.34333	3 —0.495
	Exp. [11] Exp. [12] Cal. [58]	16662.33 16384 ^b	100817.5 101675 101337 ^b	1.279 1.2841 1.3248 ^b	634.8 517 ^b			1.4601 1.4483	2.6239
a''^1 Σ_g^+ (1st well)	This paper	7096.55	97880.67	1.2918	2194.95	5.6918		1.93424	2.336
a''^1 Σ_g^+ (2 nd well)	Cal. [33] This paper	26867.41	95914 90591.27	1.105 1.5601	844.70	-12.4401	-89.963	1.9704 0.98874	10 1.024
$G^3\Delta_g$	Cal. [33] This paper Exp. [11,69] Exp. [12]	9638.48 11180	90521 88581.24 87100 87900	1.558 1.6084 1.6107 1.6107	933.9 772.02 765.9 742 49	-2.16 12.2416 11.85 11 85	-2.67	0.9915 0.92827 0.9280 0.9280	1.0 1.339 1.61
	Exp. [26] Cal. [58] Cal. [59]	11049.80 9802 ^b 9607.77 ^c	87995.05 88898 ^b 89828 ^c	1.61 1.6140 ^b 1.6103 ^c	765.9 764 ^b 758.2 ^c	13.2		0.93	1.6
$1^{3}\Sigma_{g}^{-}$	Cal. [33] This paper	9943.43	89721 98054.87	1.615 1.6095	749.6 769.92	11.71 13.0724	13.163	0.9224 0.92632	1.67 1.272
	Cal. [26] Cal. [33]	11614.38	97109.11 97776	1.61 1.614	792 761	7.4 12.16	-14	0.93 0.9225	0.79 1.6
$2^{3}\Sigma_{g}^{-}$	This paper	3630.61	113915.70 114580	1.7714 1 817	497.82 428	-23.691 9.27	-1.490 -81	0.77135 0.7285	2.130 1 5
$2^3 \Sigma_g^-$	This paper	3600.53	116050.93	1.7306	640.99	4.3542	96.978	0.80076	0.473

^a At FCI/cc-PVDZ level of theory, ^bMR-CISD + Q/TQ, ^cMR-ccCA-P except that Pople's correction is used instead of Davidson's correction, ^dOnly one vibrational level is calculated at 432.59 in cm⁻¹, ^egiven at the v = 0 level of C³ Π_u .

internuclear distances, the predicted potential energy curve lies between that of Little and Tennyson [36] and that of Spelsberg and Meyer [45]. As shown in Figure 4, a good agreement of the $b'^1 \Sigma_u^+$ state is observed, thus confirming a good description of the $b'^1 \Sigma_u^+$ state in this work.

Table 2 presents the spectroscopic parameters of the electronic states for N₂, together with their comparisons with the available theoretical values, the experimental data of Lofthus and Krupenie [11] and of Huber and Herzberg [12] and of Roux et al. [20,23,24]. For the $X^1 \Sigma_g^+$, $A^3 \Sigma_u^+$, $B^3 \Pi_g$, $W^3 \Delta_u$, $B'^3 \Sigma_u^-$, $a^1 \Pi_g$, $a'^1 \Sigma_u^-$ and $C^3 \Pi_u$ states, the calculated and measured internuclear distances differ by less than 0.001Å, and the differences are less than 0.01Å for the other lower states, except for the $b^1 \Pi_u$ state whose difference is about 0.05 Å. An excellent agreement is observed between the calculated values of the other spectroscopic parameters and those determined experimentally for the lower states. Hence, a similar accuracy is assumed for the spectroscopic parameters of higher-lying states that have not been observed

Figure 3. N₂ $b^1 \Pi_u$ state compared to that of Little and Tennyson [36] and that of Spelsberg and Meyer [45].

Figure 4. N₂ $b'^1 \Sigma_u^+$ state compared to that of Little and Tennyson [36] and that of Spelsberg and Meyer [45].

experimentally. It should be noted that the calculated vibrational levels and internal rotation constants of the $X^1\Sigma_g^+$, $A^3\Sigma_u^+$, $B^3\Pi_g$, $W^3\Delta_u$, $B'^3\Sigma_u^-$, $C^3\Pi_u$, $w^1\Delta_u$, $a^1\Pi_g$ and $a'^1\Sigma_u^-$ states are given and compared with available experimental values in the Supplementary Material. An overall agreement can be observed for these states.

B. Transition dipole moments, radiative transition probabilities and radiative lifetimes

As mentioned in the introduction, the transition properties of the $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u - B^3\Pi_g$ and $W^3\Delta_u B^3\Pi_g$ band systems were extensively studied experimentally, and the $w^1\Delta_u - a^1\Pi_g$, $a^1\Pi_g - a'^1\Sigma_u^-$, $B'^3\Sigma_u^- B^{3}\Pi_{g}$, $C'^{3}\Pi_{u} - B^{3}\Pi_{g}$ transitions were also observed in previous experiments. Theoretically, Werner et al. carried out accurate ab initio calculations of the transition properties for the $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u - B^3\Pi_g$, $W^{3}\Delta_{u} - B^{3}\Pi_{g}$ and $B^{\prime 3}\Sigma_{u}^{-} - B^{3}\Pi_{g}$ band systems of N₂. However, the transition properties of N₂ was less reported since then. For brevity, the TDMs of the $B^3\Pi_g$ – $A^{3}\Sigma_{u}^{+}, C^{3}\Pi_{u} - B^{3}\Pi_{g}, W^{3}\Delta_{u} - B^{3}\Pi_{g}, B^{\prime 3}\Sigma_{u}^{-} - B^{3}\Pi_{g},$
$$\begin{split} C'^3 \Pi_u &- B^3 \Pi_g, \, w^1 \Delta_u - a^1 \Pi_g, \, a^1 \Pi_g - a'^1 \Sigma_u^-, \, b^1 \Pi_u - \\ X^1 \Sigma_g^+ \text{ and } b'^1 \Sigma_u^+ - X^1 \Sigma_g^+ \text{ systems are given in Figure 5,} \end{split}$$
and the radiative transition probabilities of these 9 band transition systems are presented in the Supplementary Material. Moreover, radiative lifetimes of the $B^3\Pi_g$, $C^{3}\Pi_{u}$ and $W^{3}\Delta_{u}$ states are shown in Figure 6 and compared with the available experimental and theoretical values.

Figure 5. TDMs of the $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u - B^3\Pi_g$, $W^3\Delta_u - B^3\Pi_g$, $B'^3\Sigma_u^- - B^3\Pi_g$, $C'^3\Pi_u - B^3\Pi_g$, $w^1\Delta_u - a^1\Pi_g$, $a^1\Pi_g - a'^1\Sigma_u^-$, $b^1\Pi_u - X^1\Sigma_g^+$ and $b'^1\Sigma_u^+ - X^1\Sigma_g^+$ band transition systems of N₂ calculated at the icMRCI/AV6Z level of theory.

As shown in Figure 6(a), the vibrational radiative lifetimes of N₂ $B^3\Pi_g$ state are given and compared with the theoretical and experimental results. A good agreement is observed between the theoretical values of the vibrational radiative lifetimes from Ref. [71] and Ref. [28]. Our calculated vibrational radiative lifetimes are lower than previous calculated results of Refs. [28,71]. However, the radiative lifetimes for $\upsilon' = 5-12$ are in excellent agreement with the experimental results of Refs. [14,72]. For the vibrational levels of v' = 0-4, the radiative lifetimes are closer to the experimental results of Ref. [14] than the theoretical values calculated by Chauveau et al. [71] and Werner et al.[28]. For the $C^3 \Pi_u$ state, the vibrational radiative lifetimes are shown in Figure 6(b), together with the theoretical values of Refs. [28,71] and the experimental results of Refs. [73-75]. As shown, the experimental vibrational radiative lifetimes exhibit a quite large dispersion. For v' = 0, our calculated radiative lifetime is within the error bars of both the experimental value of Ref. [74] and Ref. [75]. And the calculated radiative lifetime of v' = 4 is within the allowable error range of the experimental results of Refs. [73,75]. Figure 6(c) shows the vibrational radiative lifetimes of $N_2 W^3 \Delta_u$ electronic state from this work and other references. Large differences are observed between our calculated vibrational radiative lifetimes and those computed by Werner et al. [28]. Yet the radiative lifetimes of v' = 3-7 are in good agreement with the only experimental values [62] that we can be found in the literature. For v' = 1 and 2, the

Figure 6. Comparisons of the vibrational radiative lifetimes for (**a**) N₂ B³ Π_g electronic state with the theoretical results of Refs. [28,71] and the experimental values of Refs. [14,72], (**b**) N₂ C³ Π_u electronic state with the theoretical results of Refs. [28,71] and the experimental values of Refs. [73–75], (c) N₂ W³ Δ_u electronic state with the theoretical results of Ref. [28] and the experimental values of Ref. [62].

radiative lifetimes are slightly higher than the experimental values of Ref. [62].

Of particular interest are some less studied radiative transition systems, which will be elaborated below. The $E^{3}\Sigma_{g}^{+} - A^{3}\Sigma_{u}^{+}$ transition was first observed by Kaplan [76] and Herman [77], later confirmed by many theoretical and experimental researches [33,68,78,79]. Nevertheless, there remains uncertainties relating to this band transition system due to the metastability of the $E^{3}\Sigma_{\alpha}^{+}$ state and the spin-orbital conversions from the adjacent electronic states. Hochlaf et al. [33] investigated the spinorbital integrals between the $E^{3}\Sigma_{g}^{+}$ state and the adjacent $1^3\Sigma_g^-$, $2^3\Sigma_g^-$, $B^3\Pi_g$, $2^3\Pi_g$, $3^3\Pi_g$, $2^5\Pi_g$, $3^5\Pi_g$ states and pointed out that the measured radiative lifetime for the $E^{3}\Sigma_{\sigma}^{+}$ state of $270 \pm 100 \mu s$ by Freund [68] is relatively long due to the perturbation by the $1^{3}\Sigma_{g}^{-}$ state. However, transition properties of the $E^{3}\Sigma_{g}^{+} - A^{3}\Sigma_{u}^{+}$ system has not been fully understood until now. The calculated TDMs for this band transition system are given in Table 3, together with those of the $E^{3}\Sigma_{g}^{+} - C^{3}\Pi_{u}$ and $2^{3}\Sigma_{u}^{+} E^{3}\Sigma_{g}^{+}$ systems. Our calculations indicate that the $2^{3}\Sigma_{u}^{+}$ state is lying slightly higher than the $E^3\Sigma_g^+$ state. And the $2^{3}\Sigma_{u}^{+} - E^{3}\Sigma_{g}^{+}$ emission is predicted to be relatively strong with large transition probabilities of 6.515×10^6 , 7.173×10^{6} , 7.900×10^{6} and $8.816 \times 10^{6} \text{ sec}^{-1}$ for 0-0, 1-1, 2-2 and 3-3 vibrational transition bands, respectively.

The presence of the $1^{3}\Sigma_{g}^{-}$ and $2^{3}\Sigma_{g}^{-}$ electronic states was confirmed by Hochlaf et al. [33], who also presented the potential energy curves of these two electronic states. The TDMs of the $1^{3}\Sigma_{g}^{-} - C^{\prime 3}\Pi_{u}$, $2^{3}\Pi_{u} - 1^{3}\Sigma_{g}^{-}$ and $3^{3}\Pi_{u} - 1^{3}\Sigma_{g}^{-}$ systems are presented in Figure 7, together with those of the $2^{3}\Sigma_{g}^{-} - C^{\prime 3}\Pi_{u}$, $2^3\Sigma_g^- - 2^3\Pi_u$, $2^3\Sigma_g^- - 3^3\Pi_u$ and $1^3\Sigma_g^- - B'^3\Sigma_u^-$ systems. For the internuclear distance R = 1.62Å, the calculated TDMs of the $C'^3\Pi_u-1^3\Sigma_g^-, 2^3\Pi_u-1^3\Sigma_g^-$ and $3^3 \Pi_u - 1^3 \Sigma_g^-$ transition systems are 0.201, 0.113, 0.346 Debye, respectively, which are slightly smaller than the values given by Hochlaf et al. [33]. Such deviations are mostly due to the CV correlation energy correction and the larger basis set adopted in this work. As shown in Figure 1, the $1^{3}\Sigma_{g}^{-}$ and $2^{3}\Sigma_{g}^{-}$ states are intersected with the ${}^{3}\Pi_{u}$ states, which may contribute to the radiative transitions or mutual couplings between the ${}^{3}\Sigma_{g}^{-}$ states $(1^{3}\Sigma_{g}^{-} \text{ and } 2^{3}\Sigma_{g}^{-} \text{ states})$ and the ${}^{3}\Pi_{u}$ states. In order to investigate such radiative transition properties, radiative transition probabilities between the ${}^{3}\Sigma_{g}^{-}$ states $(1^{3}\Sigma_{g}^{-} \text{ and } 2^{3}\Sigma_{g}^{-} \text{ states})$ and the ${}^{3}\Pi_{u}$ states are calculated. Radiative transitions from the $1^{3}\Sigma_{g}^{-}$ and $2^{3}\Sigma_{g}^{-}$ states to $C^{\prime 3}\Pi_{\mu}$ state are found to be relatively strong and their Einstein coefficients are given in Table 4. In

Table 3. Tl theory.	DMs of the E $^3\Sigma_g^+$ –	$- A^{3}\Sigma_{u}^{+}, E^{3}\Sigma_{g}^{+} - C$	$c^{3}\Pi_{u}, 2^{3}\Sigma_{u}^{+} - E^{3}\Sigma_{g}^{+}$, $2^3 \Sigma_u^+ - B^3 \Pi_g$ a	ind $b^1 \Pi_u - a''^1 \Sigma_g^+$ (1st well) band trar	isition systems of N ₂	calculated at the ic	MRCI/AV6Z level of
$E^3\Sigma_g^+ - A^3\Sigma$	+=	E ₃ Σ ₂	$f^+_{\rm H}-C^3\Pi_{\rm u}$	$2^3 \Sigma_u^{-1}$	$F - E^3 \Sigma_g^+$	$2^3 \Sigma_u^+$	$-B^3\Pi_g$	b ¹ Πu —	a'' ¹ Σ_g^+ (1st well)
R/Å	TDM/a.u.	R/Å	TDM/a.u.	R/Å	TDM/a.u.	R/Å	TDM/a.u.	R/Å	TDM/a.u.
0.94	0.2267	1.02	0.0903	0.94	2.5209	0.94	0.3200	0.80	3.0524
0.98	0.1073	1.04	0.0963	0.96	2.5662	0.98	0.3111	0.84	3.0526
1.02	0.0665	1.06	0.0999	0.98	2.6009	1.00	0.3029	0.88	3.0508
1.06	0.0467	1.08	0.1019	1.00	2.6291	1.02	0.2943	0.92	3.0475
1.10	0.0352	1.10	0.1026	1.02	2.6528	1.04	0.2858	0.94	3.0430
1.14	0.0273	1.12	0.1025	1.04	2.6731	1.06	0.2776	0.96	3.0376
1.18	0.0213	1.14	0.1016	1.06	2.6910	1.08	0.2699	0.98	3.0313
1.22	0.0165	1.16	0.1001	1.08	2.7070	1.10	0.2628	1.00	3.0243
1.26	0.0165	1.18	0.0982	1.10	2.7216	1.12	0.2568	1.02	3.0178
1.28	0.0171	1.20	0.0959	1.12	2.7352	1.14	0.2514	1.04	3.0178
1.30	0.0175	1.22	0.0933	1.14	2.7481	1.16	0.2515	1.06	3.0173
1.32	0.0177	1.24	0.0908	1.16	2.7498	1.18	0.2458	1.08	3.0064
1.34	0.0177	1.26	0.0883	1.18	2.7555	1.20	0.2402	1.10	3.0021
1.36	0.0171	1.28	0.0859	1.20	2.7545	1.22	0.2347	1.12	2.9812
1.38	0.0153	1.30	0.0893	1.22	2.7386	1.24	0.2290	1.16	2.1937
1.40	0.0105	1.32	0.0935	1.24	2.6334	1.26	0.2229	1.20	1.0852

Figure 7. TDMs of the $1^3 \Sigma_g^- - C'^3 \Pi_u$, $2^3 \Pi_u - 1^3 \Sigma_g^-$, $3^3 \Pi_u - 1^3 \Sigma_g^-$, $2^3 \Sigma_g^- - C'^3 \Pi_u$, $2^3 \Sigma_g^- - 2^3 \Pi_u$, $2^3 \Sigma_g^- - 3^3 \Pi_u$ and $1^3 \Sigma_g^- - B'^3 \Sigma_u^-$ band transition systems of N₂ calculated at the icMRCI/AV6Z level of theory.

addition, the $1^{3}\Sigma_{g}^{-}$ and $2^{3}\Sigma_{g}^{-}$ states can also emit to the lower $B'^{3}\Sigma_{u}^{-}$ state. Transitions from the $2^{3}\Sigma_{g}^{-}$ state to the $B'^{3}\Sigma_{u}^{-}$ state are most likely occurring according to our calculated Einstein coefficients, which are given in Table 5. The $1^{3}\Sigma_{g}^{-} - B'^{3}\Sigma_{u}^{-}$ transition is relatively weak.

The $2^{3}\Delta_{g}$ state was predicted by Michels [26] to converge to the $N(^{2}D_{u}) + N(^{2}D_{u})$ dissociation limit with a shallow potential well. This electronic state is confirmed by our calculations and located at about 116050 cm⁻¹ with a potential well of 3600.53 cm^{-1} . The equilibrium internuclear distance is 1.7306Å. By solving the Schrödinger equation over the obtained potential energy curve of the $2^{3}\Delta_{g}$ state, we determine 6 vibrational levels at 320.56, 953.93, 1591.03, 2231.55, 2856.90 and 3527.95 cm^{-1} , respectively. According to the selection rules of radiative transitions, the $2^{3}\Delta_{g}$ state can decay to the $W^3 \Delta_u$, ${}^3\Pi_u$ and $H^3 \Phi_u$ states. Our calculations indicate that the transitions of the $2^{3}\Delta_{g}$ state to the ${}^{3}\Pi_{u}$ states are relatively weak. The TDMs of the $2^{3}\Delta_{g} - W^{3}\Delta_{u}$ and $2^{3}\Delta_{g} - H^{3}\Phi_{u}$ systems are shown in Figure 8 and used to calculate the radiative transition probabilities, which are given in Table 6.

The first-positive $(B^3\Pi_g - A^3\Sigma_u^+)$ system is one of the most important band transition systems in N₂ spectrum and has been extensively studied so far. The $2^3\Sigma_u^+$ state is less studied although it has the same symmetry as $A^3\Sigma_u^+$. In our work, the $2^3\Sigma_u^+$ state is found to have a potential well above the dissociation limit, which enable to carry

							υ'						
Transition system	υ″	0	1	2	3	4	5	6	7	8	9	10	11
$\overline{1^3\Sigma_q^C'^3\Pi_u}$	0	$3.000 imes 10^{-3}$	$7.098 imes 10^1$	$4.612 imes 10^2$	3.719×10^2	$9.860 imes 10^{-2}$	4.773×10^2	1.037×10^3	$1.162 imes 10^3$	$1.457 imes 10^3$	$\textbf{2.845}\times\textbf{10}^{3}$	6.376×10^3	$1.160 imes 10^4$
$2^{3}\Sigma_{a}^{-} - C^{\prime 3}\Pi_{u}$	0	$6.038 imes 10^2$	$3.424 imes 10^3$	$1.035 imes 10^4$	$2.498 imes 10^4$	$4.299 imes 10^4$	$6.238 imes 10^4$	$7.595 imes 10^4$					
$b^1 \Pi_u^{\prime} - a^{\prime\prime 1} \Sigma_q^+$ (1st well)	0	$1.235 imes 10^3$	$4.211 imes 10^4$	$4.800 imes 10^5$	$2.936 imes10^6$	$5.701 imes 10^{6}$	$3.141 imes 10^{6}$	$1.134 imes10^{6}$	$2.121 imes 10^5$	$4.630 imes 10^3$	$1.754 imes 10^5$	$2.706 imes 10^5$	1.811×10^{5}
,	1	$5.708 imes 10^2$	$1.283 imes 10^4$	$5.500 imes 10^4$	1.131×10^{4}	$3.876 imes 10^5$	$2.022 imes 10^6$	$4.169 imes 10^{6}$	$6.155 imes10^6$	$6.373 imes 10^{6}$	$4.190 imes 10^{6}$	$1.518 imes 10^{6}$	$1.694 imes 10^5$
	2	$8.102 imes 10^{1}$	$2.780 imes 10^{3}$	4.111×10^{3}	$4.403 imes 10^{3}$	$5.824 imes 10^{4}$	$1.225 imes 10^{4}$	1.227×10^{5}	$1.251 imes 10^{6}$	$4.216 imes 10^{6}$	$7.799 imes 10^{6}$	$9.257 imes 10^{6}$	$8.032 imes 10^{6}$

Table 4. Einstein coefficients (s⁻¹) for the $1^{3}\Sigma_{g}^{-} - C^{\prime 3}\Pi_{u}$, $2^{3}\Sigma_{g}^{-} - C^{\prime 3}\Pi_{u}$ and $b^{1}\Pi_{u} - a^{\prime\prime 1}\Sigma_{g}^{+}$ (1st well) band transition systems of N₂.

Table 4. Einstein coefficients (s⁻¹) for the $1^{3}\Sigma_{g}^{-} - C^{\prime 3}\Pi_{u}$ and $b^{1}\Pi_{u} - a^{\prime\prime 1}\Sigma_{g}^{+}$ (1st well) band transition systems of N₂ (continued).

							ĩ	/ر					
Transition system	υ″	12	13	14	15	16	17	18	19	20	21	22	23
$1^3\Sigma_{\alpha}^ C^{\prime 3}\Pi_u$	0	$1.721 imes 10^4$	$\textbf{2.043}\times\textbf{10}^{4}$	$2.015 imes 10^4$	$1.780 imes 10^4$	1.492×10^4	$1.168 imes 10^4$	$9.265 imes 10^3$	$7.278 imes 10^3$	$5.551 imes 10^3$	$1.140 imes 10^2$		
$b^1 \Pi_u^{\prime} - a^{\prime\prime 1} \Sigma_a^+$ (1st well)	0	$5.267 imes 10^4$	1.292×10^{2}	$2.823 imes 10^4$	$7.304 imes 10^4$	$8.219 imes 10^4$	$5.484 imes 10^4$	$2.026 imes 10^4$	$1.673 imes 10^3$	$2.268 imes 10^3$	$1.652 imes 10^3$	$2.806 imes 10^3$	$3.128 imes 10^3$
3	1 2	$5.398 imes 10^4$ $5.275 imes 10^6$	$3.957 imes 10^5$ $2.415 imes 10^6$	$2.833 imes 10^5$ $5.542 imes 10^5$	$\begin{array}{l} 4.565 \times 10^{5} \\ 5.818 \times 10^{2} \end{array}$	$1.995 imes 10^5$ $2.417 imes 10^5$	$\begin{array}{c} 2.889 \times 10^{4} \\ 5.787 \times 10^{5} \end{array}$	$6.291 imes 10^3$ $6.516 imes 10^5$	$6.641 imes 10^4 \\ 4.817 imes 10^5$	$1.241 imes 10^5$ $2.449 imes 10^5$	$1.635 imes 10^4$ $7.663 imes 10^3$	$\begin{array}{c} 1.342 \times 10^{4} \\ 6.285 \times 10^{2} \end{array}$	$8.837 imes 10^3$ $4.473 imes 10^2$

							υ'						
υ″	0	1	2	3	4	5	6	7	8	9	10	11	12
0	$4.961 imes 10^{-2}$	1.181×10^{0}	$1.374 imes 10^1$	1.057×10^{2}	6.046×10^{2}	2.721×10^{3}	9.969×10^{3}	$3.044 imes 10^4$	$7.882 imes 10^4$	$1.756 imes 10^{5}$	$3.397 imes 10^{5}$	$5.749 imes 10^{5}$	$8.562 imes 10^5$
1	$8.513 imes 10^{-1}$	$1.843 imes 10^{1}$	$1.924 imes 10^{2}$	$1.318 imes 10^{3}$	$6.666 imes 10^{3}$	$2.634 imes 10^{4}$	$8.383 imes 10^{4}$	$2.192 imes 10^{5}$	$4.772 imes 10^{5}$	$8.729 imes 10^{5}$	$1.344 imes 10^{6}$	$1.735 imes 10^{6}$	1.855 × 10 ⁶
2	$7.233 imes 10^{0}$	$1.426 imes 10^{2}$	$1.333 imes 10^{3}$	$8.096 imes 10^{3}$	$3.604 imes10^4$	$1.242 imes 10^{5}$	$3.400 imes 10^{5}$	$7.507 imes 10^{5}$	$1.347 imes 10^{6}$	$1.959 imes 10^{6}$	$2.275 imes 10^{6}$	$2.034 imes10^{6}$	$1.286 imes 10^{6}$
3	4.664×10^{1}	$8.390 imes 10^2$	7.008×10^{3}	$3.752 imes 10^4$	$1.458 imes 10^{5}$	$4.337 imes 10^{5}$	$1.007 imes 10^{6}$	$1.839 imes 10^{6}$	$2.628 imes 10^{6}$	$2.871 imes 10^{6}$	$2.249 imes 10^{6}$	$1.066 imes 10^{6}$	$1.458 imes 10^{5}$
4	2.057×10^{2}	3.382×10^{3}	$2.517 imes 10^{4}$	$1.180 imes 10^{5}$	$3.966 imes 10^{5}$	$1.004 imes 10^{6}$	$1.939 imes 10^{6}$	$2.831 imes 10^{6}$	$3.041 imes 10^{6}$	$2.215 imes 10^{6}$	$8.490 imes 10^{5}$	$2.883 imes 10^4$	$2.944 imes 10^{5}$
5	$6.548 imes 10^{2}$	$9.967 imes 10^{3}$	$6.692 imes 10^{4}$	$2.775 imes 10^{5}$	$8.120 imes 10^{5}$	$1.758 imes 10^{6}$	$2.815 imes 10^{6}$	$3.231 imes 10^{6}$	$2.458 imes 10^{6}$	$9.658 imes 10^{5}$	$3.125 imes 10^4$	$3.552 imes 10^{5}$	1.111 × 10 ⁶
6	1.601 × 10 ³	$2.275 imes 10^4$	$1.387 imes 10^{5}$	$5.101 imes 10^{5}$	$1.300 imes 10^{6}$	$2.394 imes 10^{6}$	$3.128 imes 10^{6}$	2.692 × 10 ⁶	$1.243 imes 10^{6}$	$9.743 imes 10^{4}$	$2.579 imes 10^{5}$	$1.076 imes 10^{6}$	1.121 × 10 ⁶
7	3.226×10^{3}	$4.326 imes 10^4$	$2.420 imes 10^{5}$	$7.979 imes 10^{5}$	$1.783 imes 10^{6}$	$2.800 imes 10^{6}$	$2.950 imes 10^{6}$	1.789 × 10 ⁶	$3.439 imes 10^{5}$	$8.124 imes 10^4$	$8.900 imes 10^{5}$	$1.246 imes 10^{6}$	$5.434 imes 10^{5}$
8	$4.035 imes 10^{3}$	$5.180 imes 10^{4}$	$2.710 imes 10^{5}$	$8.165 imes 10^5$	$1.632 imes 10^{6}$	$2.226 imes 10^{6}$	$1.909 imes 10^{6}$	$7.692 imes 10^5$	1.302×10^{4}	$3.664 imes 10^5$	$9.568 imes 10^{5}$	$7.217 imes 10^{5}$	$8.949 imes 10^4$
9	3.122×10^{2}	$3.906 imes 10^{4}$	$1.960 imes 10^{5}$	$5.580 imes 10^{5}$	$1.037 imes 10^{6}$	$1.285 imes 10^{6}$	$9.461 imes 10^{5}$	$2.617 imes 10^{5}$	$1.013 imes 10^{4}$	$3.604 imes 10^{5}$	$5.885 imes 10^{5}$	$2.903 imes 10^{5}$	2.185×10^{3}
10	2.247×10^{3}	$2.772 imes 10^4$	$1.359 imes 10^{5}$	$3.745 imes 10^{5}$	$6.665 imes 10^{5}$	$7.787 imes 10^{5}$	$5.194 imes 10^{5}$	1.066×10^{5}	2.622×10^{4}	$2.753 imes 10^5$	$3.579 imes 10^{5}$	$1.316 imes 10^{5}$	2.159 × 10 ³
11	1.882×10^{3}	$2.303 imes 10^4$	$1.114 imes 10^{5}$	$3.009 imes 10^{5}$	$5.215 imes 10^{5}$	$5.873 imes 10^{5}$	$3.670 imes 10^5$	$5.984 imes 10^{4}$	$3.426 imes 10^4$	$2.350 imes 10^5$	$2.678 imes 10^{5}$	$7.985 imes 10^4$	7.208×10^{3}
12	$1.343 imes 10^{3}$	$1.635 imes 10^{4}$	$7.838 imes 10^{4}$	$2.090 imes 10^{5}$	$3.558 imes 10^{5}$	$3.907 imes 10^{5}$	$2.331 imes 10^{5}$	$3.157 imes 10^{4}$	$3.087 imes 10^4$	$1.691 imes 10^{5}$	$1.766 imes 10^{5}$	$4.484 imes 10^4$	8.872×10^{3}

Table 5. Einstein coefficients (s⁻¹) for the $2^{3}\Sigma$ - g-B'³ Σ - u band transition systems of N₂.

0.8

MOLECULAR PHYSICS

E

2429

TDMs/a.u. 0.0 0.2 0.4 0.6 5 2.0 R/Å- $2^{3}\Sigma_{g}^{-}-B'^{3}\Sigma_{u}^{-}$ $b^{1}\Pi_{u}$ - $a^{"1}\Sigma_{g}^{+}(2nd well)$ 2.5 3.0

 $B'^3\Sigma_u^-$ and $b^1\Pi_u-a''^1\Sigma_g^+$ (2nd well) band transition systems of N_2 calculated at the icMRCI/AV6Z level of theory. Figure 8. TDMs of the $2^{3}\Delta_{g} - W^{3}\Delta_{u}$, $2^{3}\Delta_{g} - H^{3}\Phi_{u}$, $2^{3}\Sigma_{g}^{-}$

 $2^{3}\Sigma_{u}^{+}$ sitions to the $B^3\Pi_g$ state. We calculate the TDMs of the 9 vibrational levels. Just as $B^3\Pi_g - A^3\Sigma_u^+$ transition systion system is most likely to observe experimentally. Table 7) are obtained, which means that this band transition probabilities. Large Einstein coefficients (shown in which are then adopted to compute the radiative transitem, the $2^{3}\Sigma_{u}^{+}$ state is expected to undergo radiative tran-- $B^3 \Pi_g$ band transition system (given in Table 3),

given in Table 4. The transition of the $b^1 \Pi_u$ state to the $b^{1}\Pi_{u} - a''^{1}\Sigma_{g}^{+}$ (1st well) system are relatively strong and well) system are calculated and presented in Table 3 and studied. As such, the TDMs of the $b^1 \Pi_u - a''^1 \Sigma_g^+$ (1st known for the Dressler-Lutz $(a'^{\prime 1}\Sigma_g^+ - X^1\Sigma_g^+)$ system first observed by Dressler and Lutz [82,83] in an absorp $a''^1 \Sigma_g^+$ (2nd well) is weak. in Figure 8. The calculated Einstein coefficients of the the TDMs of the $b^1 \Pi_u - a''^1 \Sigma_g^+$ of the $b^1\Pi_u$ state to the $a''^1\Sigma_g^+$ state is allowed, but is less to the selection rules of radiative transition, the transition curve, which is confirmed by our calculations. According state was presented with a double-well potential energy forty years later, in the work of Hochlaf et al. [33], this tion spectrum of N₂ at pressures from 1-10 kPa. About fluorescence spectrum of N₂. The $a''^1\Sigma$ through the measurement of the electron impact induced Collins [80] and later investigated by James et al. [81] I $(b^1 \Pi_u - X^1 \Sigma_g^+)$ system measured by Carroll and The $b^{1}\Pi_{u}$ state was known for the Birge-Hopfield (2nd well) are shown state was ad

							υ	//					
Transition system	υ'	0	1	2	3	4	5	6	7	8	9	10	11
$2^{3}\Delta_{q} - W^{3}\Delta_{u}$	0	2.977×10^{-1}	8.351 × 10 ⁰	1.102×10^{2}	9.164×10^{2}	5.419×10^{3}	$2.438 imes 10^4$	$8.704 imes 10^4$	2.532×10^{5}	6.116 × 10 ⁵	1.242×10^{6}	2.138 × 10 ⁶	3.137 × 10 ⁶
5 -	1	4.323×10^{0}	1.112×10^{2}	1.329×10^{3}	9.867×10^{3}	$5.128 imes 10^4$	1.991×10^{5}	6.000×10^{5}	$1.435 imes 10^{6}$	$2.754 imes 10^{6}$	$4.240 imes 10^{6}$	$5.174 imes 10^{6}$	4.850×10^{6}
$2^3\Delta_a - H^3\Phi_u$	0	6.081×10^{1}	2.160×10^{2}	2.996×10^{2}	2.032×10^{2}	$6.794 imes 10^{1}$	9.081×10^{0}	2.340×10^{1}					
5 -	1	3.782×10^{2}	8.600×10^{2}	5.701×10^{2}	6.901×10^{1}	2.285×10^{1}	6.860×10^{1}	2.356×10^{1}					

Table 6. Einstein coefficients (s⁻¹) for the $2^{3}\Delta_{g} - W^{3}\Delta_{u}$ and $2^{3}\Delta_{g} - H^{3}\Phi_{u}$ band transition systems of N₂.

Table 6. Einstein coefficients (s⁻¹) for the $2^{3}\Delta_{g} - W^{3}\Delta_{u}$ band transition systems of N₂ (continued).

							ι	n//					
Transition system	υ'	12	13	14	15	16	17	18	19	20	21	22	23
$\overline{2^3 \Delta_g - W^3 \Delta_u}$	0 1	$3.940 imes 10^{6}$ $3.251 imes 10^{6}$	$\begin{array}{c} 4.244 \times 10^{6} \\ 1.271 \times 10^{5} \end{array}$	$\begin{array}{c} 3.921 \times 10^{6} \\ 9.588 \times 10^{4} \end{array}$	$3.100 imes 10^{6}$ $2.255 imes 10^{5}$	$1.874 imes 10^{6}$ $1.025 imes 10^{6}$	$1.058 imes 10^{6}$ $1.676 imes 10^{6}$	$5.032 imes 10^5$ $1.695 imes 10^6$	$\begin{array}{c} 1.997 \times 10^{5} \\ 1.226 \times 10^{6} \end{array}$	$\begin{array}{c} 6.473 \times 10^{4} \\ 6.658 \times 10^{5} \end{array}$	$1.651 imes 10^4$ $2.728 imes 10^5$	$\begin{array}{c} 3.094 \times 10^{3} \\ 8.149 \times 10^{4} \end{array}$	$3.640 imes 10^2$ $1.647 imes 10^4$

							1111						
U,	0	-	2	S	4	5	9	7	8	6	10	11	12
0	3.053×10^{6}	4.654×10^{5}	$4.036 imes 10^6$	2.642×10^{6}	1.462×10^{6}	7.271×10^{5}	3.368×10^{5}	1.480×10^{5}	6.219×10^{4}	$2.502 imes 10^4$	9.688×10^{3}	3.660×10^{2}	1.383×10^{3}
-	6.877×10^{6}	2.263×10^{6}	2.551×10^{2}	1.044×10^{6}	2.032×10^{6}	2.013×10^{6}	1.468×10^{6}	$8.990 imes 10^{5}$	4.940×10^{5}	2.527×10^{5}	1.225×10^{5}	$5.666 imes 10^4$	2.510×10^{4}
7	6.580×10^{6}	2.391×10^{5}	2.988×10^{6}	$1.515 imes 10^{6}$	4.251×10^{4}	4.033×10^{5}	1.184×10^{6}	$1.453 imes 10^{6}$	1.244×10^{6}	8.719×10^{5}	5.392×10^{5}	3.068×10^{5}	1.643×10^{5}
ŝ	3.399×10^{6}	4.206×10^{6}	1.127×10^{6}	6.907×10^{5}	2.061×10^{6}	9.892×10^{5}	$4.178 imes 10^{4}$	2.298×10^{5}	7.941×10^{5}	$1.084 imes 10^{6}$	1.022×10^{6}	7.833×10^{5}	5.282×10^{5}
4	9.814×10^{5}	$5.181 imes 10^{6}$	7.445×10^{5}	$2.870 imes 10^{6}$	4.712×10^{4}	9.820×10^{5}	1.512×1	6.365×10^{5}	$2.360 imes 10^{4}$	1.654×10^{5}	$5.830 imes 10^{5}$	8.385×10^{5}	8.401×10^{5}
S	1.356×10^{5}	2.228×10^{6}	3.915×10^{6}	1.176×10^{5}	2.566×10^{6}	9.487×10^{5}	$8.957 imes 10^{4}$	1.076×10^{6}	1.103×10^{6}	4.012×10^{5}	8.612×10^{3}	1.376×10^{5}	4.552×10^{5}
9	1.368×10^{3}	2.658×10^{5}	2.429×10^{6}	1.469×10^{6}	1.631×10^{6}	1.238×10^{6}	$1.699 imes 10^{6}$	1.343×10^{5}	3.756×10^{5}	9.948×10^{5}	$7.870 imes 10^{5}$	$2.430 imes 10^{5}$	1.275×10^{3}
2	7.434×10^{3}	1.372×10^{4}	1.186×10^{5}	1.252×10^{6}	2.621×10^{4}	3.761×10^{6}	3.734×10^{5}	$1.422 imes 10^{6}$	7.973×10^{5}	$2.851 imes 10^{4}$	$5.349 imes 10^{5}$	8.621×10^{5}	5.264×10^{5}
8	5.577×10^{3}	9.571×10^{4}	3.693×10^{5}	1.683×10^{5}	1.610×10^{3}	1.894×10^{6}	$8.517 imes 10^{6}$	8.259×10^{5}	$6.274 imes 10^{4}$	$2.753 imes 10^{6}$	$4.808 imes 10^4$	$1.364 imes 10^{4}$	1.034×10^{6}

Table 7. Einstein coefficients (s $^{-1}$) for the $2^3\Sigma_u^+-B^3\Pi_g$ band transition systems of N $_2$

IV. Conclusion

In conclusion, the potential energy curves and the spectroscopic parameters of 7 singlet and 17 triplet electronic states of N₂ have been calculated using the icM-RCI + Q/56 + CV + DK method, and the radiative transition probabilities between different electronic states have been investigated using both the potential energy curves and the TDMs obtained by the icMRCI/AV6Z approach. The reproduced spectroscopic parameters are in excellent agreement with the experimental data, which manifests the accuracy of our calculated potential energy curves. Moreover, comparisons of the calculated vibrational levels and the inertial rotation constants with reliable experimental data for N₂ X¹ Σ_g^+ , A³ Σ_u^+ , B³ Π_g , $W^{3}\Delta_{u}, B^{\prime 3}\Sigma_{u}^{-}, C^{3}\Pi_{u}, w^{1}\Delta_{u}, a^{1}\Pi_{g} \text{ and } a^{\prime 1}\Sigma_{u}^{-} \text{ states are}$ also made, a good agreement within 1% is observed. To verify the accuracy and reliability of the obtained Einstein coefficients, the radiative lifetimes of the $B^3\Pi_g$, $C^{3}\Pi_{u}$ and $W^{3}\Delta_{u}$ states are calculated and compared with the experimental data, also a good agreement is observed. It is concluded that the present values of the Einstein coefficients in $B^3\Pi_g - A^3\Sigma_u^+$, $C^3\Pi_u - B^3\Pi_g$ and $W^{3}\Delta_{u} - B^{3}\Pi_{g}$ transitions is reliable for astrophysical models. Such demonstrated quality of these observed transitions gives us confidence in the reliability of our predicted radiative transitions that were not observed in previous experiments, i.e. the $1^{3}\Sigma_{g}^{-}-C^{\prime3}\Pi_{u},\,2^{3}\Sigma_{g}^{-} C^{\prime3}\Pi_u, 2^3\Sigma_g^- - B^{\prime3}\Sigma_u^-, 2^3\Delta_g - W^3\Delta_u, 2^3\Delta_g - H^3\Phi_u,$ $2^{3}\Sigma_{u}^{+} - B^{3}\Pi_{g}$ and $b^{1}\Pi_{u} - a''^{1}\Sigma_{g}^{+}$ transitions are predicted to be more intense due to the large Einstein coefficients. This work will provide guidelines for observing these predicted radiative transitions in the future.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51336002).

References

- [1] J.W. Chamberlin, *Physics of the Aurora and Air Glow* (Academic Press Inc., New York, 1961).
- [2] A.L. Broadfoot, S.K. Atreya, J.L. Bertaux, J.E. Blamont, A.J. Dessler, T.M. Donahue, W.T. Forrester, D.T. Hall, F. Herbert, J.B. Holberg, D.M. Hunten, V.A. Krasnopolsky, S. Linick, J.I. Lunine, J.C. McConnell, H.W. Moos, B.R. Sandel, N.M. Schneider, D.E. Shemansky, G.R. Smith, D.F. Strobel and R.V. Yelle, Science. 246, 1459–1466 (1989).
- [3] U.F. Harald, Rev. Geophys. 45, 1–32 (2007).
- [4] W.L. Imhof, E.E. Gaines, D.R. King, G.H. Nakano and R.V. Smith, Org. Lett. 7, 573–576 (1964).

- [5] A. Bogaerts, E. Neyts, R. Gijbels and J.V.D. Mullen, Spectroc. Acta. Pt. B-Atom. Spectr. 57, 609–658 (2002).
- [6] J. Anketell and R.W. Nicholls, Rep. Prog. Phys. 33, 269 (1970).
- [7] C.O. Laux, C.H. Kruger and J. Quant, Spectrosc. Radiat. Transf. 48, 9–24 (1992).
- [8] d.S. Lino and M.M. Dudeck, J. Quant. Spectrosc. Radiat. Transf. 102, 348–386 (2006).
- [9] Y. Babou, P. Rivière, M.-Y. Perrin and A. Soufiani, J. Quant. Spectrosc. Radiat. Transf. 110, 89–108 (2009).
- [10] R. Brun, *High Temperature Phenomena in Shock Waves* (Springer Berlin, Heidelberg, France, 2012).
- [11] A. Lofthus and P.H. Krupenie, J. Phys. Chem. Ref. Data.6, 113–307 (1977).
- [12] K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
- [13] D. Neuschäfer, C. Ottinger and A. Sharma, Chem. Phys. 117, 133–148 (1987).
- [14] L.G. Piper, K.W. Holtzclaw, B.D. Green and W.A.M. Blumberg, J. Chem. Phys. **90**, 5337–5345 (1989).
- [15] M.E. Fraser, W.T. Rawlins and S.M. Miller, J. Chem. Phys. 88, 538–544 (1988).
- [16] C. Ottinger and A.F. Vilesov, J. Chem. Phys. 100, 4862–4869 (1994).
- [17] D. Cerny, F. Roux, C. Effantin, J. D"Incan and J. Verges, J. Mol. Spectrosc. 81, 216–226 (1980).
- [18] F. Roux, C. Effantin, J. D'Incan and J. Verges, J. Mol. Spectrosc. 91, 238–242 (1982).
- [19] F. Roux and F. Michaud, J. Mol. Spectrosc. 116, 43–47 (1986).
- [20] F. Roux and F. Michaud, J. Mol. Spectrosc. **129**, 119–125 (1988).
- [21] F. Roux, F. Michaud and M. Vervloet, Can. J. Phys. 67, 143–147 (1989).
- [22] F. Roux and F. Michaud, Can. J. Phys. **68**, 1257–1261 (1990).
- [23] F. Roux and F. Michaud, J. Mol. Spectrosc. 149, 43–47 (1991).
- [24] F. Roux, F. Michaud and M. Vervloet, J. Mol. Spectrosc. 97, 43-47 (1993).
- [25] B.R. Lewis, K.G. Baldwin, J.P. Sprengers, W. Ubachs, G. Stark and K. Yoshino, J. Chem. Phys. **129**, 164305 (2008).
- [26] H.H. Michels, Adv. Chem. Phys. 45, 225 (1981).
- [27] W.C. Ermler, A.D. Mclean and R.S. Mulliken, J. Chem. Phys. 86, 1305–1314 (1982).
- [28] H.-J. Werner, J. Kalcher and E.-A. Reinsch, J. Chem. Phys. 81, 2420–2431 (1984).
- [29] W.C. Ermler, J.P. Clark and R.S. Mulliken, J. Chem. Phys. 86, 370–375 (1987).
- [30] H.J. Werner and P.J. Knowles, J. Chem. Phys. 89, 5803–5814 (1988).
- [31] P.J. Knowles and H.J. Werner, Chem. Phys. Lett. 145, 514–522 (1988).
- [32] H. Ndome, M. Hochlaf, B.R. Lewis, A.N. Heays, S.T. Gibson and H. Lefebvre-Brion, J. Chem. Phys. **129**, 164307 (2008).
- [33] M. Hochlaf, H. Ndome, D. Hammoutène, M. Vervloet and J. Phys, B-At. Mol. Opt. 43, 245101 (2010).
- [34] M. Hochlaf, H. Ndome and D. Hammoutène, J. Chem. Phys. 132, 104310 (2010).

- [35] D.H. Shi, X. Wei, J.F. Sun, Z.L. Zhu and Y.F. Liu, Int. J. Quantum. Chem. 112, 1323–1342 (2012).
- [36] D.A. Little and J. Tennyson, J. Phys. B-At. Mol. Opt. 46, 18592–18601 (2013).
- [37] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, MOLPRO, version 2015.1, a package of ab initio programs, < http://www.molpro.net > .
- [38] H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby and M. Schütz, WIRES Comput. Mol. Sci. 2, 242–253 (2012) doi:10.1002/wcms.82.
- [39] P.J. Knowles and H.J. Werner, Chem. Phys. Lett. 115, 259–267 (1985).
- [40] S.R. Langhoff and E.R. Davidson, Int. J. Quantum. Chem.
 8, 61–72 (1974).
- [41] D.E. Woon and T.H. Dunning, J. Chem. Phys. 98, 1358–1371 (1994).
- [42] T.V. Mourik, A. Wilson and T. Dunningjr, Mol. Phys. 96, 529–547 (1999).
- [43] D.E. Woon and T.H. Dunning Jr, J. Chem. Phys. 103, 4572–4585 (1995).
- [44] G. Herzberg, *Molecular Spectra and Molecular Structure III* (Electronic Spectra and Electronic Structure of Polyatomic Molecules Van Nostrand Reinhold, New York, 1967).
- [45] D. Spelsberg and W. Meyer, J. Chem. Phys. 115, 6438–6449 (2001).
- [46] D.G. Truhlar, Chem. Phys. Lett. 294, 45-48 (1998).
- [47] P.L. Fast, M.A.L. Sánchez and D.G. Truhlar, J. Chem. Phys. 111, 2921–2926 (1999).
- [48] M. Douglas and N.M. Kroll, Ann. Phys. 82, 89–155 (1974).
- [49] M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945–10956 (2004).
- [50] M. Reiher and A. Wolf, J. Chem. Phys. **124**, 64102 (2004).
- [51] R.J. Le Roy and J. Quant, Spectrosc. Radiat. Transf. 186, 167–178 (2016).
- [52] C.E. Moore, Nat Stand Ref Data Ser, Nat Bur Stand (US).34, 1–22 (1970).
- [53] P.K. Carroll and R.S. Mulliken, J. Chem. Phys. 43, 2170–2179 (1965).
- [54] J.W. Ledbetter and K. Dressler, J. Mol. Spectrosc. 63, 370-390 (1976).
- [55] W. John and J. Ledbetter, J. Chem. Phys. 67, 3400–3401 (1977).
- [56] S.L. Guberman, J. Chem. Phys. 137, 074309 (2012).
- [57] H. Larsen, J. Olsen, P. Jørgensen and O. Christiansen, J. Chem. Phys. **113**, 6677–6686 (2000).
- [58] T. Müller, M. Dallos, H. Lischka, Z. Dubrovay and P.G. Szalay, Theor. Chem. Acc. 105, 227–243 (2001).
- [59] W. Jiang and A.K. Wilson, J. Chem. Phys. 134, 114104–65 (2011).
- [60] R.E. Miller, J. Chem. Phys. 43, 1695–1701 (1965).
- [61] W.M. Benesch and K.A. Saum, J. Phys. B-At. Mol. Opt. 4 (1971).
- [62] J. Kaplan, Phys. Rev. 45, 947 (1934).
- [63] A. Lofthus and R.S. Mulliken, J. Chem. Phys. 26, 1010–1017 (1957).
- [64] R. Mcfarlane, Ieee. J. Quantum. Elect. 2, 229-232 (1966).
- [65] U. Buontempo, S. Cunsolo, G. Jacucci and J.J. Weis, J. Chem. Phys. 63, 2570–2576 (1975).

- [66] A. Chutjian, D.C. Cartwright and S. Trajmar, Phys. Rev. Lett. 30, 195–198 (1973).
- [67] B.R. Lewis, A.N. Heays, S.T. Gibson, H. Lefebvre-Brion and R. Lefebvre, J. Chem. Phys. **129**, 164306 (2008).
- [68] R.S. Freund, J. Chem. Phys. 50, 3734–3740 (1969).
- [69] P.K. Carroll, C.C. Collins and J.T. Murnaghan, J. Phys. B-At. Mol. Opt. 5, 1634 (1972).
- [70] D.E. Shemansky, J. Chem. Phys. 64, 565-580 (1976).
- [71] S. Chauveau, M.Y. Perrin, P. Rivière and A. Soufiani, J. Quant. Spectrosc. Radiat. Transf. 72, 503–530 (2002).
- [72] E.E. Eyler and F.M. Pipkin, J. Chem. Phys. **79**, 3654–3659 (1983).
- [73] M. Larsson and T. Radozycki, Phys. Scripta. 25, 627–630 (1982).
- [74] M.N. Dumont and F. Remy, J. Chem. Phys. 76, 1175–1176 (1982).

- [75] K.H. Becker, H. Engels and T. Tatarczyk, Chem. Phys. Lett. 51, 111–115 (1977).
- [76] K.A. Saum, R. Covey and W. Benesch, J. Opt. Soc. Am. 63, 592–596 (1973).
- [77] R. Herman, Ann. Phys. 11, 241–291 (1945).
- [78] P.K. Carroll and N.D. Sayers, Proc. Phys. Soc. 66, 1138 (1953).
- [79] P.K. Carroll and A.P. Doheny, J. Mol. Spectrosc. 50, 257–265 (1974).
- [80] P.K. Carroll and C.P. Collins, Can. J. Phys. 47, 563–589 (1969).
- [81] G.K. James, J.M. Ajello, B. Franklin and D.E. Shemansky, J. Phys. B-At. Mol. Opt. 23, 2055–2081 (1990).
- [82] K. Dressler and B.L. Lutz, Phys. Rev. Lett. **19**, 1219–1221 (1967).
- [83] B.L. Lutz, J. Chem. Phys. 51, 706–716 (1969).